Each Invertible Sharply d-Transitive Finite Permutation Set with d 4 is a Group
نویسنده
چکیده
All known finite sharply 4-transitive permutation sets containing the identity are groups, namely S4, S5, A6 and the Mathieu group of degree 11. We prove that a sharply 4-transitive permutation set on 11 elements containing the identity must necessarily be the Mathieu group of degree 11. The proof uses direct counting arguments. It is based on a combinatorial property of the involutions in the Mathieu group of degree 11 (which is established here) and on the uniqueness of the Minkowski planes of order 9 (which had been established before): the validity of both facts relies on computer calculations. A permutation set is said to be invertible if it contains the identity and if whenever it contains a permutation it also contains its inverse. In the geometric structure arising from an invertible permutation set at least one block-symmetry is an automorphism. The above result has the following consequences. i) A sharply 5-transitive permutation set on 12 elements containing the identity is necessarily the Mathieu group of degree 12. ii) There exists no sharply 6-transitive permutation set on 13 elements. For d ≥ 6 there exists no invertible sharply d-transitive permutation set on a finite set with at least d + 3 elements. iii) A finite invertible sharply d-transitive permutation set with d ≥ 4 is necessarily a group, that is either a symmetric group, an alternating group, the Mathieu group of degree 11 or the Mathieu group of degree 12.
منابع مشابه
Sharply 2-transitive sets of permutations and groups of affine projectivities
Using new results on sharply transitive subsets, we determine the groups of projectivities of finite affine planes, apart from (unknown) planes of order 23 or 24. The group of all projectivities of a geometry G is a measure for the complexity of G: this group tends to be rather large if G is far from being a classical geometry. See [PS81] for more information on the role of projectivities in ge...
متن کاملDoubly Transitive but Not Doubly Primitive Permutation Groups
The connection between doubly transitive permutation groups G on a finite set Cl which are not doubly primitive and automorphism groups of block designs in which X = 1 has been investigated by Sims [2] and Atkinson [1]. If, for a e Q, Ga has a set of imprimitivity of size 2 then it is easy to show that G is either sharply doubly transitive or is a group of automorphisms of a non-trivial block d...
متن کاملON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES
A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.
متن کاملSharply $(n-2)$-transitive Sets of Permutations
Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...
متن کاملPERMUTATION GROUPS WITH BOUNDED MOVEMENT ATTAINING THE BOUNDS FOR ODD PRIMES
Let G be a transitive permutation group on a set ? and let m be a positive integer. If no element of G moves any subset of ? by more than m points, then |? | [2mp I (p-1)] wherep is the least odd primedividing |G |. When the bound is attained, we show that | ? | = 2 p q ….. q where ? is a non-negative integer with 2 < p, r 1 and q is a prime satisfying p < q < 2p, ? = 0 or 1, I i n....
متن کامل